第三十五章 谁是张硕?赶紧帮忙讲讲!(1/5)

  【科研从博士生开始】小说免费阅读,请收藏 一七小说【1qxs.com】

  当天晚上,张硕收到了弗雷德里希的回复邮件——

  “张硕先生,你好。

  我是弗雷德里希-约斯特,我审核了你的论文。很抱歉的是,最开始我是带着找问题的心态看的。

  因为我不相信。

  任何一种非线性偏微分方程,都不可能找到通用算法。

  这是我的观点,而你的论文让我改变了看法。

  其中,最精彩的部分在于‘证明渐进解’的逻辑,我还特别问了老朋友马克西姆,把那一部分发给了他。

  你肯定知道他,大名鼎鼎!

  马克西姆告诉我,‘证明渐进解’的部分很完善,能形成完善的逻辑闭环,他评价说那一部分非常有意思,还说想认识你。”

  邮件的前半部分都是说一下无关的事情,唯一确定的是‘证明渐进解’的逻辑没问题。

  后半部分才是主体内容。

  “我对于你的论文很感兴趣,并仔细研究了很久。我发现如果是涉及到非线性问题,你的算法得出的结果范围就会广泛。

  如果涉及到完全非线性的方程,所得出的结果甚至会变得没有意义。

  我的判断,对吗?

  你的算法还可以更进一步,也就是求得更精确的解的范围吗?”

  在邮件的最后,弗雷德里希-约斯特问了两个问题。

  一个是‘涉及到非线性问题,算法得出的结果范围就很广泛’,直白来说,就是结果会变得不精准。

  另一个就是询问算法是否可以再进一步。

  第一个问题非常关键。

  偏微分方程可以分为‘线性’和‘非线性’,而‘非线性’也不一定是‘完全非线性’。

  方程和方程不同,‘非线性’的程度也存在区别。

  线性方程就像是一条笔直的大路,而非线性方程则是公路出现了破损,只要带上了破损,就会被归在‘非线性’范围内。

  显然,公路破损程度存在差异,完全破损,看不出公路的形状,就可以称之为‘完全非线性’。

  张硕的算法问题在于,非线性的程序越高,所计算出的解的范围也就越大。

  比如,线性方程,精确解是100,可以求出99~101的范围。

  某个非线性严重的方程,解的区域是99~101,可能求出的是-10000~10000,只是把解的区域框在了范围内。

 

本章未完,点击[下一页]继续阅读-->>

温馨提示
  书友您好!程序猿书吧[cxysb.com] 是本站的备用域名及备用网站,用于公布本站的最新可用域名。如果您使用的域名无法访问,那么点击 程序猿书吧[cxysb.com] 域名可以帮您回到本站。如遇到内容无法显示或者显示不全,乱码错字,请退出阅读模式或畅读模式即可正常阅读。